OHT Goes to Renvyle House Hotel 130 Year Celebrations

OHT Goes to Renvyle House Hotel 130 Year Celebrations

It is always a pleasure to be invited to showcase your products and services to people who will be genuinely interested in your showing. Fortunately the guys at Renvyle House were kind enough to do is last weekend, on Saturday the 9th March. Let us tell you, the pleasure was all ours, what a place and what an experience

The day started around 8 o’clock in the morning when the packing begun with all the promotional material, flyers, backdrop and samples finding their way into the car. The bags were packed, the car was full of fuel and we were off. The hour and a half journey from Shrule, Co. Mayo, Ireland was going to be a long one, full of hills and windy roads but when you get to pass through beautiful areas such as Cong, Clonbur, Leenaan and Kylemore Abbey, who could complain.

Our view of Kylemore Abbey.

Our view of Kylemore Abbey.

The sun was shining as we drove, the music was blaring and the views were spectacular. It was only 11.30 and the day was off to a great start. When we arrived at Renvyle (our first time here) we were mesmerised by the beauty of the place, located right on the shore, with the beach literally 20 metres away, we did not need any more positives. Alas, I had to do some work.

Our Stand at The Indoor Market

Our Stand at The Indoor Market

In the hotel I met Zoe who showed me where I would be setting up for the Indoor Market and went through the details of the event with me. I got my stand set up, had a fantastic interview on the shore with Valerie Cox from RTE Radio 1 and went to relax in my room (which was complimentary by the way) for 15 minutes before the show got on the road. The Indoor Market was great, I was privileged enough to meet many fantastic people from a wide variety of places. Lucinda O’Sullivan and Rosita Boland would be two more familiar names but some great people at the market included The Connemara Smokehouse and the Nuns from Kylemore Abbey who had loads on offer. After the market I quickly packed away and went to my room to relax and watch the second half of the Ireland v France rugby match.

Then it was time to get ready for my Prosecco Reception before I got to enjoy a Gourmet Dinner of Seven Courses accompanied by specifically chosen wine for each course. You will find a few images below of some of the courses from the meal. I unfortunately got so absorbed in enjoying the marvellous food on offer, taking pictures kept slipping my mind.

Two Glasses of Prosecco

Two Glasses of Prosecco

The Dinner Menu

The Dinner Menu

Lobster and Mango Salad

Lobster and Mango Salad

Soup

Soup

Sorbet to clear the Palette

Sorbet to clear the Palette

Lamb main course

Lamb main course

Gorgeous refreshing dessert

Gorgeous refreshing dessert

The Gourmet Evening began at 7 o’clock and around 11.30 pm I finally put down the last bite of a gorgeous meal. A meal which was not only great for the food by Chef Tim O’ Sullivan and his team, but also for the service of the front of house staff and especially for the wonderful people I was able to sit down and enjoy my meal with, and people who I hope I will meet again in the future.

I would just like to finish by showing you the view from my room in the hotel which was spectacular and by thanking all of those in Renvyle for making my stay so relaxing and enjoyable. Finally I would also like to thank them for extending the invite of staying and enjoying their hospitality to my better have. I have gathered some great brownie points with her for this one.

The view from the bedroom

The view from the bedroom

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook

Seaweed: A rich source of vitamins and bioactive compounds

Seaweed: A rich source of vitamins and bioactive compounds

Awareness of the potential health benefits of seaweed – not just for human consumption– is gathering apace, whereby selected seaweed species are now being added to aquaculture and agriculture feed with resulting benefits. One reason for this is that seaweed is a significant source of vitamins and other interesting compounds that have a number of biological functions.

Biological Functions of Vitamins

Kelp Brown

Kelp Seaweed

Vitamins can be divided into those that are either water or fatsoluble. Water-soluble vitamins include both B-complex vitamins and vitamin C. The B-complex vitamins are the largest group and have roles associated with metabolism, muscle tone, cell growth and the nervous system. For example, Nori (Porphyra sp.) and sea lettuce (Ulva sp.) are good sources of vitamin B12 which has an important role in DNA synthesis. Vitamin C is a water-soluble vitamin that is important for gum health, iron absorption and resistance to infection.

Fat-soluble vitamins include vitamin A, D, E and K. Vitamin A (retinol) plays an important role in bone growth, tooth development, reproduction and cell division. Vitamin D, another fat-soluble vitamin, is important for bone growth and maintenance. Vitamins E and K also have a number of biological functions including antioxidant activity and blood clotting. In addition to their biochemical functions and antioxidant activity, seaweed-derived vitamins have been demonstrated to have other health benefits such as reducing hypertension, preventing cardiovascular disease and reducing the risk of cancer.

Factors Affecting Vitamin Content 

Although seaweed contains both water and fat-soluble vitamins, the vitamin composition of seaweed is variable and depends on a number of factors. For example, evidence exits of seasonal variation in the vitamin content of the seaweed Eisenia arborea, where fat-soluble vitamins follow a different pattern to those that are water-soluble. Another factor affecting seaweed vitamin content is light exposure, as plants growing in bright light can contain higher levels of some vitamins.

Seaweed species is another critical factor which can affect vitamin composition. For example, the level of niacin (vitamin B3) in some brown seaweeds (e.g. Laminaria sp.) is approximately one tenth the level found in the red seaweed, Porphyra tenera. Other factors that can influence vitamin content include geographical location, salinity and sea temperature. Vitamin content can also be affected by processing as both heat and dehydration can have a significant effect on the vitamin levels.

Seaweed-Derived Compounds

In addition to vitamins, seaweed also contains bioactive compounds which have been proven to have antibiotic; antiviral; antimicrobial; mitogenic anti-inflammatory; anti-adhesion; ACE-inhibitory; antioxidant; anticancer and antithrombotic effects. These bioactive compounds include polysaccharides; proteins; amino acids; pigments phenolic compounds and sterols. The levels of these bioactive compounds also depend on factors such as species, geographical location and season.

Incorporating Seaweed into Feed

Ocean Harvest Technology’s fully sustainable feed product ‘OceanFeed™’ is a specially selected, unique blend that harnesses the bioactive compounds and vitamins present in seaweed. OceanFeed™ therefore offers a natural, fully sustainable feed ingredient formula for the aquaculture and animal feed sectors that can replace costly synthetic ingredients.

Researcher working in the OHT Lab

Researcher working in the OHT Lab

by Simon Faulkner

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook

 

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

 

LinkedIn logo with link to Ocean Harvest Technology LinkedIn page

Find Ocean Harvest Technology

 

 

Valentine’s Day at Ocean Harvest Technology!!

Valentine’s Day at Ocean Harvest Technology!!

We try not to take ourselves too seriously here at Ocean Harvest so we decided to have some fun with some of the Kelp which we had drying on our floor today. Have a look at the photos and tell us what you make of our heart! Happy Valentines Day everyone.

IMG_0818

Our two Laura’s and Toine working hard!

IMG_0821

IMG_0827

IMG_0830

IMG_0834

Seaweed – an untapped source of protein and bioactive compounds for aquaculture

Seaweed – an untapped source of protein and bioactive compounds for aquaculture

Seaweed is fast gaining a reputation as the ideal sustainable food source. Certainly, the nutritional properties of seaweeds are both unique and interesting, with some seaweeds having protein levels as high as 47%. Seaweed, therefore, represents an untapped source of protein and has great future potential.

As the global population continues to rise, the need for sustainable, alternative sources of protein also increases. In fact, it is estimated that the worldwide requirement for food will increase up to 50% by 2030, thus highlighting the absolute need for sustainable development. Recently, Ocean Harvest Technology has worked in collaboration with a number of research institutes to evaluate the use of different seaweeds as a sustainable protein source for aquaculture.

Why Seaweed Protein?

Protein is the most expensive constituent of fish feed whereby global expenditure exceeds €1bn per annum. Fishmeal is a high-protein animal feed used extensively in aquaculture but uses wild fish stocks to feed farmed fish and is an unsustainable feed resource. The ability of fishmeal supply to meet future demand is a massive global concern – especially given that aquaculture production is growing at a rate of nearly 9% per annum.

Image of Ocean Harvest Technology Products

Ocean Harvest Technology Produce

As wild fish stocks decline, the aquaculture industry faces a massive challenge to identify cost-effective and environmentally-friendly alternatives to fishmeal on which it is so heavily reliant. Seaweed protein has the potential to provide a solution to this problem as it is relatively underexploited, contains high amounts of protein and can be cultured in a sustainable, environmentally-friendly manner.

Essential Nutrients

Proteins are an important source of energy, present in all cells and are an essential component of most biochemical processes. Proteins comprise one or more chains of various amino acids, organised in a specific manner that give the protein a specific structure. When ingested, proteins are broken down into amino acids or short chains of amino acids called peptides. These amino acids play key roles in important metabolic pathways associated with maintenance, growth, reproduction, and immunity.

Amino acids can be classified as either essential or non-essential. Essential amino acids cannot be produced by the animal and must be sourced solely from the diet. Most seaweed species contain all of the essential amino acids and are also rich in some nonessential amino acids such as aspartic and glutamic acid.

In general, the protein content of seaweed ranges from 3-47% and considerable differences exist in the protein content of brown, green and red seaweeds. In contrast to brown seaweeds, red seaweeds contain higher levels of protein which can be up to 47% (Porphyra sp.). Brown seaweeds can have protein levels up to around 20% (Alaria esculenta) whereas the levels found in green seaweeds are as high as 29% (Ulva lactuca). Differences in season, species and environment can have a significant impact on the composition of amino acids and protein in seaweeds.

Bioactive Proteins

Seaweed is a natural source of biologically active proteins, amino acids and peptides. Two groups of bioactive proteins – lectins and phycobiliproteins – are present in some seaweed. Lectins are a group of carbohydrate-binding proteins that display anti-bacterial, anti-cancer, anti-HIV and anti-inflammatory biological activity; lectins have been successfully isolated from a number of seaweeds including Eucheuma sp. and Codium fragile.

Harvesting Seaweed to extract protein

Harvesting Seaweed to extract protein

Another group of proteins – phycobiliproteins – exhibit antioxidant, anti-inflammatory, cholesterol-lowering and antiviral activities to name but a few and have been isolated from the red seaweed, Palmaria palmata. A number of bioactive amino acids are also present in seaweed. One such example is taurine – a bioactive amino acid required for some biological functions. Other bioactive amino acids present in seaweeds include laminine, kainoids, and mycosporinelike amino acids. These amino acids have a wide range of biological properties including antioxidant, hypotensive, insecticidal, anthelmintic, and neuroexcitatory activity. In addition to bioactive amino acids, some bioactive peptides have been isolated from seaweed. These include carnosine and glutathione both of which are antioxidant peptides that protect cells from damage caused by reactive oxygen species. Another bioactive peptide produced by seaweed is Kahalalide F which is a cyclic depsipeptide with anti-cancer activity and is also active in the treatment of AIDS.

Seaweed Protein in Aquafeed

The functional biological properties of seaweed protein make it an excellent candidate for a natural, sustainable alternative to fishmeal in aquaculture. The capacity for large-scale production of seaweeds in Ireland, together with the high-purity seaweed protein extraction developed by Ocean Harvest Technology further enhances the future potential. The availability of such sustainable protein sources is a prerequisite for our ability to continually produce high-quality and safe products.

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on FacebookTwitter Logo with a link to the Ocean Harvest Technology Twitter PageFollow us on Twitter

oceanharvesttechnology:

We love the idea of spicy seaweed popcorn and definitely going to try it as soon as possible!!

Originally posted on vegetarian epicurean:

If I’m honest with myself, I don’t really love football.  I love watching with hubby.  I love making delicious snacks.  I even love the Buffalo Bills.  But I have to admit I zone out a bit while watching football on tv…

Regardless, the playoffs and super bowl mean I get to make good food.  My specialty is a many-layer dip, filled with everything delicious you might want to stick on a corn chip. However, I don’t usually stop there; chili, Southwestern egg rolls, spinach-artichoke dip, and so many more have graced my [coffee] table over the years.

And though I think these are the exact occasions to forgo any calorie counting (cheat days are the key to any good diet), adding some healthier options in are never a bad idea.  This popcorn fills that niche.  It’s Japanese flavors blend perfectly for a delicious salty and spicy popcorn.

SpicySeaweedPopcorn

View original 165 more words

Seaweed biomass cultivation likely to replace finite fossil fuels

Seaweed biomass cultivation likely to replace finite fossil fuels

Total worldwide energy consumption today is roughly 480 exajoules with almost 90% derived from the combustion of fossil fuels. Fossil fuels such as coal, oil and natural gas are limited in supply and will one day be depleted. As a result, the quest for renewable energies – being energies generated from sustainable natural resources such as sunlight, wind, tides, etc and from industrial or urban waste and biomass – began decades ago. In 2007, the 27 member states of the EU decided that 20% of its energy should come from renewable sources by 2020 (Lisbon Treaty).

Image of graph of Global biomass potential v worldwide energy consumptionThe table above shows global energy consumption and its estimated increase by 2050, and the worldwide potential of biomass for energy production based on recent studies. This clearly indicates the need for aquatic biomass to fulfil our energy consumption in a renewable and sustainable way.

At Sea Biomass Production

Since the available area for cultivation at sea is so much greater than on land (70% of the earth’s surface is ocean) and with macroalgae growth rates being much higher than of conventional land crops, the potential for biomass production at sea is enormous. In addition, aquaculture for energy production can avoid the often heated debate surrounding food crops for fuel (food-energy nexus); sustainability; water usage; pesticides and land use change. Equally, fertilisation, which has a major affect on greenhouse gas balances of crops on land, can be altered or even diminished when cultivating in an aquatic environment.

Greenhouse gas emission worldwide using aquatic biomass for energy and fuel is, in most cases, much less, compared to the more conventional biofuels, produced from land-based crops. Seaweed cultivation is a traditional practice in East Asia. A total of 15 million tonnes wet-weight is cultivated per annum, making it the biggest aquaculture venture on the planet. Of all seaweed harvested, 93% is produced from aquaculture.

Seaweed cultivation in Europe is still in a developmental phase with only a few commercial farms in operation, notably in France, Germany and Ireland, where the focus is on small-scale production for high added-value seaweeds. Total combined production of these farms is less than 100 tonnes wet-weight per annum.

Image of Declan Hanniffy checking some seeded ropes on the farm

Declan Hanniffy checking some seeded ropes on the farm

Multi-purpose Usage 

Seaweed is a source of food; food additives and high added-value speciality products such as pharmaceuticals and cosmetics. It also has huge potential as a biomass source. Therefore, the combination of bio-refinery, with the isolation of valuable seaweed components for high-value products and renewable energy production, will be necessary in future years.

Today, aquatic biomass cultivation is a logistically complex multi-step process onshore and offshore, and is mainly based on small volume production on long ropes and manual harvesting. As a result, production costs per biomass unit are much too high. Urgent research is therefore needed to develop near shore and offshore cultivation in the western world, to produce a sustainable, consistent and cheap feedstock with a high carbohydrate level.

No matter the species, it usually takes significant time to develop into a booming aquaculture industry. With oysters for example, it took almost 30 years. Seaweed too is likely to go through a similarly lengthy developmental process, despite significant breakthroughs such as the biochemical process to convert algal carbohydrate into ethanol. Indeed, several initiatives have already been funded, amongst them the MERMAID and Energetic algae (ENALGAE) projects in Denmark – the latter with Irish participation lead by Dr Maeve Edwards of NUI, Galway.

Seaweed as Feedstock

Another EU project with Irish involvement that is looking at seaweed as feedstock for biofuel production is the € 3.5 million EU funded project, AT~SEA which commenced this month. The project involves partners from The Netherlands, Portugal, Belgium, France, Norway, UK and Oceanfuel Ltd from Ireland.

The project will explore high-volume cultivation on large textile substrates, with the aim of reducing production costs, thus making offshore production of biomass a high-potential source for renewable energy. It is generally accepted that Europe’s industries must become more efficient, more environmentally sustainable and more competitive.

With the AT~SEA project we want to implement and realise this objective via a tangible case. Expertise from four sectors: textile; offshore; renewable energy and biotechnology, will be combined to generate new knowledge (textile for offshore use; textile-seaweed interaction), which will be used to develop an innovative technological solution (textilebased offshore production of aquatic biomass) to respond to one of the grand challenges (sustainable and renewable energy supply).

Image of Laminaria hyperborean growing in the intertidal in Ireland

Laminaria hyperborean growing in the intertidal in Ireland

This project will focus mainly on cultivating the native brown seaweed Laminariaceae in North Western European Atlantic waters. These brown algae are known to grow rapidly and produce a high biomass, and to have high carbohydrate content suitable for fermentation into ethanol or furans and could be a sustainable alternative to biofuels and plastics.

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook