OHT Goes to Renvyle House Hotel 130 Year Celebrations

OHT Goes to Renvyle House Hotel 130 Year Celebrations

It is always a pleasure to be invited to showcase your products and services to people who will be genuinely interested in your showing. Fortunately the guys at Renvyle House were kind enough to do is last weekend, on Saturday the 9th March. Let us tell you, the pleasure was all ours, what a place and what an experience

The day started around 8 o’clock in the morning when the packing begun with all the promotional material, flyers, backdrop and samples finding their way into the car. The bags were packed, the car was full of fuel and we were off. The hour and a half journey from Shrule, Co. Mayo, Ireland was going to be a long one, full of hills and windy roads but when you get to pass through beautiful areas such as Cong, Clonbur, Leenaan and Kylemore Abbey, who could complain.

Our view of Kylemore Abbey.

Our view of Kylemore Abbey.

The sun was shining as we drove, the music was blaring and the views were spectacular. It was only 11.30 and the day was off to a great start. When we arrived at Renvyle (our first time here) we were mesmerised by the beauty of the place, located right on the shore, with the beach literally 20 metres away, we did not need any more positives. Alas, I had to do some work.

Our Stand at The Indoor Market

Our Stand at The Indoor Market

In the hotel I met Zoe who showed me where I would be setting up for the Indoor Market and went through the details of the event with me. I got my stand set up, had a fantastic interview on the shore with Valerie Cox from RTE Radio 1 and went to relax in my room (which was complimentary by the way) for 15 minutes before the show got on the road. The Indoor Market was great, I was privileged enough to meet many fantastic people from a wide variety of places. Lucinda O’Sullivan and Rosita Boland would be two more familiar names but some great people at the market included The Connemara Smokehouse and the Nuns from Kylemore Abbey who had loads on offer. After the market I quickly packed away and went to my room to relax and watch the second half of the Ireland v France rugby match.

Then it was time to get ready for my Prosecco Reception before I got to enjoy a Gourmet Dinner of Seven Courses accompanied by specifically chosen wine for each course. You will find a few images below of some of the courses from the meal. I unfortunately got so absorbed in enjoying the marvellous food on offer, taking pictures kept slipping my mind.

Two Glasses of Prosecco

Two Glasses of Prosecco

The Dinner Menu

The Dinner Menu

Lobster and Mango Salad

Lobster and Mango Salad

Soup

Soup

Sorbet to clear the Palette

Sorbet to clear the Palette

Lamb main course

Lamb main course

Gorgeous refreshing dessert

Gorgeous refreshing dessert

The Gourmet Evening began at 7 o’clock and around 11.30 pm I finally put down the last bite of a gorgeous meal. A meal which was not only great for the food by Chef Tim O’ Sullivan and his team, but also for the service of the front of house staff and especially for the wonderful people I was able to sit down and enjoy my meal with, and people who I hope I will meet again in the future.

I would just like to finish by showing you the view from my room in the hotel which was spectacular and by thanking all of those in Renvyle for making my stay so relaxing and enjoyable. Finally I would also like to thank them for extending the invite of staying and enjoying their hospitality to my better have. I have gathered some great brownie points with her for this one.

The view from the bedroom

The view from the bedroom

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook

Advertisements
Seaweed: A rich source of vitamins and bioactive compounds

Seaweed: A rich source of vitamins and bioactive compounds

Awareness of the potential health benefits of seaweed – not just for human consumption– is gathering apace, whereby selected seaweed species are now being added to aquaculture and agriculture feed with resulting benefits. One reason for this is that seaweed is a significant source of vitamins and other interesting compounds that have a number of biological functions.

Biological Functions of Vitamins

Kelp Brown

Kelp Seaweed

Vitamins can be divided into those that are either water or fatsoluble. Water-soluble vitamins include both B-complex vitamins and vitamin C. The B-complex vitamins are the largest group and have roles associated with metabolism, muscle tone, cell growth and the nervous system. For example, Nori (Porphyra sp.) and sea lettuce (Ulva sp.) are good sources of vitamin B12 which has an important role in DNA synthesis. Vitamin C is a water-soluble vitamin that is important for gum health, iron absorption and resistance to infection.

Fat-soluble vitamins include vitamin A, D, E and K. Vitamin A (retinol) plays an important role in bone growth, tooth development, reproduction and cell division. Vitamin D, another fat-soluble vitamin, is important for bone growth and maintenance. Vitamins E and K also have a number of biological functions including antioxidant activity and blood clotting. In addition to their biochemical functions and antioxidant activity, seaweed-derived vitamins have been demonstrated to have other health benefits such as reducing hypertension, preventing cardiovascular disease and reducing the risk of cancer.

Factors Affecting Vitamin Content 

Although seaweed contains both water and fat-soluble vitamins, the vitamin composition of seaweed is variable and depends on a number of factors. For example, evidence exits of seasonal variation in the vitamin content of the seaweed Eisenia arborea, where fat-soluble vitamins follow a different pattern to those that are water-soluble. Another factor affecting seaweed vitamin content is light exposure, as plants growing in bright light can contain higher levels of some vitamins.

Seaweed species is another critical factor which can affect vitamin composition. For example, the level of niacin (vitamin B3) in some brown seaweeds (e.g. Laminaria sp.) is approximately one tenth the level found in the red seaweed, Porphyra tenera. Other factors that can influence vitamin content include geographical location, salinity and sea temperature. Vitamin content can also be affected by processing as both heat and dehydration can have a significant effect on the vitamin levels.

Seaweed-Derived Compounds

In addition to vitamins, seaweed also contains bioactive compounds which have been proven to have antibiotic; antiviral; antimicrobial; mitogenic anti-inflammatory; anti-adhesion; ACE-inhibitory; antioxidant; anticancer and antithrombotic effects. These bioactive compounds include polysaccharides; proteins; amino acids; pigments phenolic compounds and sterols. The levels of these bioactive compounds also depend on factors such as species, geographical location and season.

Incorporating Seaweed into Feed

Ocean Harvest Technology’s fully sustainable feed product ‘OceanFeed™’ is a specially selected, unique blend that harnesses the bioactive compounds and vitamins present in seaweed. OceanFeed™ therefore offers a natural, fully sustainable feed ingredient formula for the aquaculture and animal feed sectors that can replace costly synthetic ingredients.

Researcher working in the OHT Lab

Researcher working in the OHT Lab

by Simon Faulkner

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook

 

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

 

LinkedIn logo with link to Ocean Harvest Technology LinkedIn page

Find Ocean Harvest Technology

 

 

Valentine’s Day at Ocean Harvest Technology!!

Valentine’s Day at Ocean Harvest Technology!!

We try not to take ourselves too seriously here at Ocean Harvest so we decided to have some fun with some of the Kelp which we had drying on our floor today. Have a look at the photos and tell us what you make of our heart! Happy Valentines Day everyone.

IMG_0818

Our two Laura’s and Toine working hard!

IMG_0821

IMG_0827

IMG_0830

IMG_0834

Seaweed – an untapped source of protein and bioactive compounds for aquaculture

Seaweed – an untapped source of protein and bioactive compounds for aquaculture

Seaweed is fast gaining a reputation as the ideal sustainable food source. Certainly, the nutritional properties of seaweeds are both unique and interesting, with some seaweeds having protein levels as high as 47%. Seaweed, therefore, represents an untapped source of protein and has great future potential.

As the global population continues to rise, the need for sustainable, alternative sources of protein also increases. In fact, it is estimated that the worldwide requirement for food will increase up to 50% by 2030, thus highlighting the absolute need for sustainable development. Recently, Ocean Harvest Technology has worked in collaboration with a number of research institutes to evaluate the use of different seaweeds as a sustainable protein source for aquaculture.

Why Seaweed Protein?

Protein is the most expensive constituent of fish feed whereby global expenditure exceeds €1bn per annum. Fishmeal is a high-protein animal feed used extensively in aquaculture but uses wild fish stocks to feed farmed fish and is an unsustainable feed resource. The ability of fishmeal supply to meet future demand is a massive global concern – especially given that aquaculture production is growing at a rate of nearly 9% per annum.

Image of Ocean Harvest Technology Products

Ocean Harvest Technology Produce

As wild fish stocks decline, the aquaculture industry faces a massive challenge to identify cost-effective and environmentally-friendly alternatives to fishmeal on which it is so heavily reliant. Seaweed protein has the potential to provide a solution to this problem as it is relatively underexploited, contains high amounts of protein and can be cultured in a sustainable, environmentally-friendly manner.

Essential Nutrients

Proteins are an important source of energy, present in all cells and are an essential component of most biochemical processes. Proteins comprise one or more chains of various amino acids, organised in a specific manner that give the protein a specific structure. When ingested, proteins are broken down into amino acids or short chains of amino acids called peptides. These amino acids play key roles in important metabolic pathways associated with maintenance, growth, reproduction, and immunity.

Amino acids can be classified as either essential or non-essential. Essential amino acids cannot be produced by the animal and must be sourced solely from the diet. Most seaweed species contain all of the essential amino acids and are also rich in some nonessential amino acids such as aspartic and glutamic acid.

In general, the protein content of seaweed ranges from 3-47% and considerable differences exist in the protein content of brown, green and red seaweeds. In contrast to brown seaweeds, red seaweeds contain higher levels of protein which can be up to 47% (Porphyra sp.). Brown seaweeds can have protein levels up to around 20% (Alaria esculenta) whereas the levels found in green seaweeds are as high as 29% (Ulva lactuca). Differences in season, species and environment can have a significant impact on the composition of amino acids and protein in seaweeds.

Bioactive Proteins

Seaweed is a natural source of biologically active proteins, amino acids and peptides. Two groups of bioactive proteins – lectins and phycobiliproteins – are present in some seaweed. Lectins are a group of carbohydrate-binding proteins that display anti-bacterial, anti-cancer, anti-HIV and anti-inflammatory biological activity; lectins have been successfully isolated from a number of seaweeds including Eucheuma sp. and Codium fragile.

Harvesting Seaweed to extract protein

Harvesting Seaweed to extract protein

Another group of proteins – phycobiliproteins – exhibit antioxidant, anti-inflammatory, cholesterol-lowering and antiviral activities to name but a few and have been isolated from the red seaweed, Palmaria palmata. A number of bioactive amino acids are also present in seaweed. One such example is taurine – a bioactive amino acid required for some biological functions. Other bioactive amino acids present in seaweeds include laminine, kainoids, and mycosporinelike amino acids. These amino acids have a wide range of biological properties including antioxidant, hypotensive, insecticidal, anthelmintic, and neuroexcitatory activity. In addition to bioactive amino acids, some bioactive peptides have been isolated from seaweed. These include carnosine and glutathione both of which are antioxidant peptides that protect cells from damage caused by reactive oxygen species. Another bioactive peptide produced by seaweed is Kahalalide F which is a cyclic depsipeptide with anti-cancer activity and is also active in the treatment of AIDS.

Seaweed Protein in Aquafeed

The functional biological properties of seaweed protein make it an excellent candidate for a natural, sustainable alternative to fishmeal in aquaculture. The capacity for large-scale production of seaweeds in Ireland, together with the high-purity seaweed protein extraction developed by Ocean Harvest Technology further enhances the future potential. The availability of such sustainable protein sources is a prerequisite for our ability to continually produce high-quality and safe products.

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on FacebookTwitter Logo with a link to the Ocean Harvest Technology Twitter PageFollow us on Twitter

Seaweed biomass cultivation likely to replace finite fossil fuels

Seaweed biomass cultivation likely to replace finite fossil fuels

Total worldwide energy consumption today is roughly 480 exajoules with almost 90% derived from the combustion of fossil fuels. Fossil fuels such as coal, oil and natural gas are limited in supply and will one day be depleted. As a result, the quest for renewable energies – being energies generated from sustainable natural resources such as sunlight, wind, tides, etc and from industrial or urban waste and biomass – began decades ago. In 2007, the 27 member states of the EU decided that 20% of its energy should come from renewable sources by 2020 (Lisbon Treaty).

Image of graph of Global biomass potential v worldwide energy consumptionThe table above shows global energy consumption and its estimated increase by 2050, and the worldwide potential of biomass for energy production based on recent studies. This clearly indicates the need for aquatic biomass to fulfil our energy consumption in a renewable and sustainable way.

At Sea Biomass Production

Since the available area for cultivation at sea is so much greater than on land (70% of the earth’s surface is ocean) and with macroalgae growth rates being much higher than of conventional land crops, the potential for biomass production at sea is enormous. In addition, aquaculture for energy production can avoid the often heated debate surrounding food crops for fuel (food-energy nexus); sustainability; water usage; pesticides and land use change. Equally, fertilisation, which has a major affect on greenhouse gas balances of crops on land, can be altered or even diminished when cultivating in an aquatic environment.

Greenhouse gas emission worldwide using aquatic biomass for energy and fuel is, in most cases, much less, compared to the more conventional biofuels, produced from land-based crops. Seaweed cultivation is a traditional practice in East Asia. A total of 15 million tonnes wet-weight is cultivated per annum, making it the biggest aquaculture venture on the planet. Of all seaweed harvested, 93% is produced from aquaculture.

Seaweed cultivation in Europe is still in a developmental phase with only a few commercial farms in operation, notably in France, Germany and Ireland, where the focus is on small-scale production for high added-value seaweeds. Total combined production of these farms is less than 100 tonnes wet-weight per annum.

Image of Declan Hanniffy checking some seeded ropes on the farm

Declan Hanniffy checking some seeded ropes on the farm

Multi-purpose Usage 

Seaweed is a source of food; food additives and high added-value speciality products such as pharmaceuticals and cosmetics. It also has huge potential as a biomass source. Therefore, the combination of bio-refinery, with the isolation of valuable seaweed components for high-value products and renewable energy production, will be necessary in future years.

Today, aquatic biomass cultivation is a logistically complex multi-step process onshore and offshore, and is mainly based on small volume production on long ropes and manual harvesting. As a result, production costs per biomass unit are much too high. Urgent research is therefore needed to develop near shore and offshore cultivation in the western world, to produce a sustainable, consistent and cheap feedstock with a high carbohydrate level.

No matter the species, it usually takes significant time to develop into a booming aquaculture industry. With oysters for example, it took almost 30 years. Seaweed too is likely to go through a similarly lengthy developmental process, despite significant breakthroughs such as the biochemical process to convert algal carbohydrate into ethanol. Indeed, several initiatives have already been funded, amongst them the MERMAID and Energetic algae (ENALGAE) projects in Denmark – the latter with Irish participation lead by Dr Maeve Edwards of NUI, Galway.

Seaweed as Feedstock

Another EU project with Irish involvement that is looking at seaweed as feedstock for biofuel production is the € 3.5 million EU funded project, AT~SEA which commenced this month. The project involves partners from The Netherlands, Portugal, Belgium, France, Norway, UK and Oceanfuel Ltd from Ireland.

The project will explore high-volume cultivation on large textile substrates, with the aim of reducing production costs, thus making offshore production of biomass a high-potential source for renewable energy. It is generally accepted that Europe’s industries must become more efficient, more environmentally sustainable and more competitive.

With the AT~SEA project we want to implement and realise this objective via a tangible case. Expertise from four sectors: textile; offshore; renewable energy and biotechnology, will be combined to generate new knowledge (textile for offshore use; textile-seaweed interaction), which will be used to develop an innovative technological solution (textilebased offshore production of aquatic biomass) to respond to one of the grand challenges (sustainable and renewable energy supply).

Image of Laminaria hyperborean growing in the intertidal in Ireland

Laminaria hyperborean growing in the intertidal in Ireland

This project will focus mainly on cultivating the native brown seaweed Laminariaceae in North Western European Atlantic waters. These brown algae are known to grow rapidly and produce a high biomass, and to have high carbohydrate content suitable for fermentation into ethanol or furans and could be a sustainable alternative to biofuels and plastics.

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook

Seaweed- Ireland and Abroad

Seaweeds have been used in Ireland for decades for a variety of purposes; however the seaweed industry is still the Cinderella of the aquaculture and seafood Industry. Why is that?

Image of Laminaria hyperborean growing in the intertidal in Ireland

Laminaria hyperborean growing in the intertidal in Ireland

There are diverse market application for seaweeds ranging from food, functional foods and health supplements to agricultural applications, cosmetics, biotechnology and aquaculture. Besides we have over 600 different species of seaweed identified from Irish waters.

Unfortunately seaweeds have never been taken seriously in Ireland compared to fish, mussels, scallops and Oyster and ample funding has gone into developing this resource. The recession of late has made things worse with BIM completely abandoning its seaweed program. Again it is the lack of vision or no vision at all! Countries such as Norway are setting up large scale programmes to develop their seaweed resources and seaweed aquaculture for integrated multi-trophic aquaculture. This is to improve the environmental record of fish farming and progress biofuel development while Norway is a country that has large oil resources.

If we look at seaweed at a global scale it is a different story. Worldwide seaweed aquaculture is a growing sector. Latest figures show a production of over 15 million tonnes wet weight with an economic value of US$ 6.5 billion. The majority of seaweed produced by aquaculture is used for human consumption and for extraction of hydrocolloids although the application for biofuels and other valuable ingredients is starting to play an important role. Moreover, new applications of algae and specific algal compounds in different sectors, such as functional foods, cosmetics, biomedicine and biotechnology are developed. Recent trends in life style towards natural, healthy products are favourable for advancement of seaweed consumption, applications and aquaculture.

Image of Ocean Harvest Technology Products

Ocean Harvest Technology Produce

Luckily the private sector in Ireland including Ocean Harvest Technology is rapidly developing the seaweed resources initiating new ideas and implementing their own R&D programs. It is through these initiatives that the future outlook looks good for our forgotten green gold on our shores. Especially the emerging markets such as functional foods and biofuel development from seaweeds will further enhance the sector. Bioethanol is currently produced from land-based crops such as corn and sugar cane, and the continued use of these crops will drive the food versus fuel debate more as demand for ethanol increases. Aquaculture of seaweeds is sustainable, use less or no agricultural inputs (pesticides, fertiliser, land, water), and not be part of the human or animal food chain. Cultivated seaweeds could be used as an alternative biomass source for bioethanol production and production of other high value added chemicals. Seaweed biomass represents an abundant and carbon neutral renewable resource with potential to reduce green-house gas emissions and the man-made impact on climate change. Coupled to fish farming it could even help alleviate environmental issues and recycle nitrates and phosphates.

The recently proposed deep water fish farm at the back of the Aran Islands producing 15,000 tonnes on top of the 13,000 currently produced nationally should incorporate aquaculture of seaweeds. This would allow for improving the environmental record, sustainability and carbon credits of the operation and could form part of the fish feed used for the fish creating the ultimate recycling of nutrients. Now that would be a long term vision!

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook

When pigs will swim?

When pigs will swim?

The world population is ever increasing and so is pork consumption . During the last 40 years, global pork production increased with a factor 4 from 24.7 million ton in 1961 to 100.6 million ton in 2009 (FAO, 2011). However, as usual the case with intensive farming many disease-associated problems start to develop, resulting into increased chemical and antibiotic use in the industry. Bioactives in seaweeds might be one of the answers to make the industry more sustainable and chemical free, making pigs more of a marine mammal!

Image of two pigs

Link to OceanFeed Swine product information

 Disease and antibiotic use

Intensive pig farming is susceptible to many diseases amongst them several bacterial diseases and parasitic worms. In human medicine, antibiotic use is generally confined to treatment of illness. In contrast, antibiotics and other antimicrobials often are routinely given to food animals in order to grow animals faster and to compensate for unsanitary conditions on many industrial farms. Bacteria exposed to antibiotics at low doses for prolonged periods can develop antibiotic-resistance—a dangerous trait enabling bacteria to survive and grow instead of being inhibited or destroyed by therapeutic doses of a drug. Since many of the classes of antibiotics used in food animal production also are important in human medicine, resistance that begins on the farm can lead to a serious public health problem.  This has already happened in the border area between The Netherlands and Germany where pigs with a type of MRSA have developed 100% resistance to tetracyclines (an antibiotic) and has jumped from pigs to humans with the resulting consequences that there is no antibiotic treatment available. The same has happened in Britain with Clostridium difficile.

Recognizing the potential for a health crisis, Denmark stopped the administration of antibiotics used for growth promotion (i.e., non-medical uses). Today in Denmark, all uses of antibiotics in food animals must be accompanied by a prescription in a valid veterinarian-client-patient relationship, and veterinarians cannot profit from the sale of antibiotics. In addition, farmers, veterinarians and pharmacies must report the use and sale of antibiotics, and farm inspections are conducted regularly. The Danish government and industry data show that livestock and poultry production has increased since the ban, while antibiotic resistance has declined on farms and in meat. There are real concerns that unless antibiotics are used much more sparingly we will soon find ourselves facing a range of serious diseases in humans and animals that can no longer be treated effectively.

 Natural alternatives

With several countries now banning or voluntary reducing the antibiotic use an urgent need has arisen to use alternative and sustainable feed ingredients and antibiotic replacements. The recent food scares in the swine industry in 2008 (Ireland) and 2011 (Germany) showing pork with unacceptable high levels of PCB’s and dioxins and other bio-accumulative contaminants, demanded further action to be taken to reduce contaminant levels in feed. Moreover, there has been a strongly growing demand for organic farmed products in many countries, insisting that pigs have to be organically fed and reared. In this respect seaweeds have received limited attention; nevertheless several studies have demonstrated that seaweeds can be used as partial replacement for many ingredients in animal feeds, such as, vitamin & mineral mixes, binders, antibiotics, and antioxidants. Several studies have shown that addition of single seaweed species can reduce certain enterobacteria, improve pig gut health and increase iodine in meat. Furthermore they have an antibacterial effect and prebiotic effect and help reducing scouring/ Diarrhoea and Ammonia reduction.

Certain bioactive molecules from seaweed like laminarin and fucoidan have a pronounced anti-microbial action, similar to in-feed antibiotics in piglets. This is beneficial from a performance perspective, as a lower microbial load will result in a lower energy cost to the pig. Also, the removal of harmful bacteria like E. coli helps control disease rates in piglets.

 Ocean Harvest Technology

The Ocean Harvest Technology LogoTo tackle current problems Ocean Harvest Technology has developed and specific macroalgae mix for the swine industry. Oceanfeed™- swine contains a plethora of natural bioactive compounds which by incorporating in the diet can modulate several functions in the pig and assist in the control of chronic diseases and infections found in the pig industry. It allows for disease-free farmed pigs to be reared in a more natural and sustainable way, easing concerns on environmental impact and sustainability. Oceanfeed™-swine is the first marine natural and sustainable functional feed ingredient derived from macroalgae. Nutrition plays a key role in the efficient production of pork, and accounts for more than 70% of the cost of production. Nutrition is constantly evolving in order to ensure we cost effectively supply the feeds to produce high quality pork.

Earlier this year Ocean Harvest Technology in conjunction with Sharragh pigfarms conducted feeding trials with 240 pigs and Oceanfeed-swine at different percentages of inclusion (0.5%, 2% and 5%) and compared the results against an industry reference diet. During and at the end of the trial 16 pigs were slaughtered and processed at the Dawn Pork and Bacon factory in Waterford. Intestinal samples were taken and meat samples were obtained after the pigs were processed by a local butcher (Jarlath Kelly, Tuam) and send to University College Cork for taste analysis and packaging trials. After 4 months of trial from weaning stage to 100 kg pigs the results showed a positive outcome in several ways.

The following results have been obtained:

  1. Higher weight gain, leaner meat and lower food conversion efficiency when pigs were supplemented with 0.5% Oceanfeed-Swine
  1. Significantly improved flavor, juiciness and overall consumer acceptability of the meat at 5% inclusion of Oceanfeed-Swine
  2. Improved observed health and alertness of animals at trial site

There are still some results to be analyzed on gut flora and gut development but the results so far are very encouraging for full commercialization of Oceanfeed-Swine. This strongly indicates that seaweeds could play an important role in intensive swine farming in Ireland and the EU.

Twitter Logo with a link to the Ocean Harvest Technology Twitter Page

Follow us on Twitter

An image of the Facebook logo to link to the Ocean Harvest technology page

Find us on Facebook